Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(5): 2723-2731, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36706344

RESUMO

Consumption of opioids is a growing global health problem. The gold standard for drugs of abuse screening is immunochemical assays. However, this method comes with some disadvantages when screening for a wide variety of opioids. Detection of the binding of a compound at the human µ-opioid receptor (MOR) offers a promising alternative target. Here, we set up a urine assay to allow for detection of compounds that bind at the MOR, thus allowing the assay to be utilized as a screening tool for opioid intake. The assay is based on the incubation of MOR-containing cell membranes with the selective MOR-ligand DAMGO and urine. After filtration, the amount of DAMGO in the eluate is analyzed by liquid chromatography tandem mass spectroscopy (LC-MS/MS). The absence of DAMGO in the eluate corresponds to a competing MOR ligand in the urine sample, thus indicating opiate/opioid intake by the suspect. Sensitivity and specificity were determined by the analysis of 200 consecutive forensic routine casework urine samples. A pronounced displacement of DAMGO was observed in 29 of the 35 opiate/opioid-positive samples. Detection of fentanyl intake proved to be the most challenging aspect. Applying a cut-off value of, e.g., 10% DAMGO binding would lead to a sensitivity of 83% and a specificity of 95%. Consequently, the novel assay proved to be a promising screening tool for opiate/opioid presence in urine samples. The nontargeted approach and possible automation of the assay make it a promising alternative to conventional methods.


Assuntos
Analgésicos Opioides , Alcaloides Opiáceos , Humanos , Analgésicos Opioides/análise , Analgésicos Opioides/urina , Cromatografia Líquida , Ala(2)-MePhe(4)-Gly(5)-Encefalina , Ligantes , Alcaloides Opiáceos/análise , Alcaloides Opiáceos/urina , Espectrometria de Massas em Tandem
2.
Anal Chim Acta ; 1219: 339978, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715126

RESUMO

Radioactive ligand binding assays are the most commonly applied method for the determination of binding affinities of compounds at a particular receptor. While they are highly sensitive and high-throughput capable they come with major disadvantages due to the radioactive ligands utilized. Here we present the development of a mass-spectrometry-based binding assay for the determination of binding affinities at the human µ-opioid receptor using non-labelled DAMGO ([D-Ala2, N-MePhe4, Gly5-ol]-enkephalin). The runtime of the LC-MS/MS method was 5.5 min per data point and allowed for the highly sensitive detection of 38.5 fg DAMGO on column. The assay shows low non-specific binding and the equilibrium dissociation constant of DAMGO was 0.57 nM. The assay was applied to determine the Ki values of 17 opiates/opioids and the results were in good agreement with the data from radioactive receptor binding assays published in the literature. Additionally, the Ki value of six 2-benzylbenzimidazoles, including the widely abused designer opioid isotonitazene, were determined ranging from 0.654 to 72.9 nM. Consequently, the developed assay provides a suitable alternative to radioactive binding assays as it allows for a reliable and rapid determination of receptor binding affinities of e.g. newly emerging designer opioids.


Assuntos
Analgésicos Opioides , Alcaloides Opiáceos , Benzimidazóis , Cromatografia Líquida , Ala(2)-MePhe(4)-Gly(5)-Encefalina , Humanos , Espectrometria de Massas em Tandem
4.
Forensic Toxicol ; 37(1): 186-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636986

RESUMO

PURPOSE: In recent years e-liquids used in electronic cigarettes have become an attractive alternative to smoking tobacco. A new trend is the use of e-liquids containing synthetic cannabinoids (SCs) instead of smoking cannabis or herbal mixtures laced with SCs. In the frame of a systematic monitoring of the online market of 'legal high' products, e-liquids from online retailers who also sell herbal blends were bought. METHODS: The products were analyzed by gas chromatography-mass spectrometry. In some of the e-liquids an unknown compound was detected which was identified as the SC 5F-Cumyl-PINACA (1-(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide) by nuclear magnetic resonance analysis. To investigate the phase I metabolism of this new class of compounds, 5F-Cumyl-PINACA and its non-fluorinated analog Cumyl-PINACA were incubated with pooled human liver microsomes (pHLM). Cumyl-PINACA was additionally ingested orally (0.6 mg) by a volunteer in a controlled self-experiment. To assess the relative potency of Cumyl-PINACA a set of SCs were characterized using a cAMP assay. RESULTS: Metabolism of 5F-Cumyl-PINACA and Cumyl-PINACA showed similarities with AM-2201 and JWH-018. The main metabolites were formed by hydroxylation at the N-pentyl side chain. The main metabolites detected in the volunteer's urine sample were the same as in the pHLM assay. All SCs tested with the cAMP assay were full agonists at the CB1 receptor. Cumyl-PINACA was the most potent SC among the tested compounds and showed an EC50 value of 0.06 nM. CONCLUSIONS: The increasing popularity of e-liquids particularly among young people, and the extreme potency of the added SCs, pose a serious threat to public health. To our knowledge, this is the first report describing the tentative identification of human in vivo metabolites of Cumyl-PINACA and 5F-Cumyl-PINACA.

5.
Drug Test Anal ; 11(3): 541-549, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30578721

RESUMO

The number of newly appearing benzodiazepine derivatives on the new psychoactive substances (NPS) drug market has increased over the last couple of years totaling 23 'designer benzodiazepines' monitored at the end of 2017 by the European Monitoring Centre for Drugs and Drug Addiction. In the present study, three benzodiazepines [flunitrazolam, norflurazepam, and 4'-chlorodiazepam (Ro5-4864)] offered as 'research chemicals' on the Internet were characterized and their main in vitro phase I metabolites tentatively identified after incubation with pooled human liver microsomes. For all compounds, the structural formula declared by the vendor was confirmed by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-tandem mass spectrometry (LC MS/MS), liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS) analysis and nuclear magnetic resonance (NMR) spectroscopy. The metabolic steps of flunitrazolam were monohydroxylation, dihydroxylation, and reduction of the nitro function. The detected in vitro phase I metabolites of norflurazepam were hydroxynorflurazepam and dihydroxynorflurazepam. 4'-Chlorodiazepam biotransformation consisted of N-dealkylation and hydroxylation. It has to be noted that 4'-chlorodiazepam and its metabolites show almost identical LC-MS/MS fragmentation patterns to diclazepam and its metabolites (delorazepam, lormetazepam, and lorazepam), making a sufficient chromatographic separation inevitable. Sale of norflurazepam, the metabolite of the prescribed benzodiazepines flurazepam and fludiazepam, presents the risk of incorrect interpretation of analytical findings.


Assuntos
Benzodiazepinas/metabolismo , Benzodiazepinonas/metabolismo , Drogas Desenhadas/metabolismo , Flurazepam/análogos & derivados , Desentoxicação Metabólica Fase I , Microssomos Hepáticos/metabolismo , Biotransformação , Cromatografia Líquida , Flurazepam/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Técnicas In Vitro , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem
6.
Handb Exp Pharmacol ; 252: 383-410, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30367253

RESUMO

Benzodiazepines have been introduced as medical drugs in the 1960s. They replaced the more toxic barbiturates, which were commonly used for treatment of anxiety or sleep disorders at the time. However, benzodiazepines show a high potential of misuse and dependence. Although being of great value as medicines, dependence to these drugs is a concern worldwide, in part due to overprescription and easy availability. Therefore, the phenomenon of benzodiazepines sold via Internet shops without restrictions at low prices is alarming and poses a serious threat to public health. Most of these compounds (with the exception of, e.g., phenazepam and etizolam) have never been licensed as medical drugs in any part of the world and are structurally derived from medically used benzodiazepines. Strategies of clandestine producers to generate new compounds include typical structural variations of medically used 1,4-benzodiazepines based on structure-activity relationships as well as synthesis of active metabolites and triazolo analogs of these compounds. As they were obviously designed to circumvent national narcotics laws or international control, they can be referred to as "designer benzodiazepines." The majority of these compounds, such as diclazepam, clonazolam, and nitrazolam, have been described in scientific or patent literature. However, little is known about their pharmacological properties and specific risks related to their use. This chapter describes the phenomenon of designer benzodiazepines and summarizes the available data on pharmacokinetics and pharmacodynamics as well as analytical approaches for their detection.


Assuntos
Benzodiazepinas/farmacologia , Drogas Desenhadas/farmacologia , Psicotrópicos/farmacologia , Humanos
7.
Drug Test Anal ; 10(9): 1417-1429, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29726116

RESUMO

Synthetic cannabinoids (SCs) are a structurally diverse class of new psychoactive substances. Most SCs used for recreational purposes are based on indole or indazole core structures. EG-018 (naphthalen-1-yl(9-pentyl-9H-carbazol-3-yl)methanone), EG-2201 ((9-(5-fluoropentyl)-9H-carbazol-3-yl)(naphthalen-1-yl)methanone), and MDMB-CHMCZCA (methyl 2-(9-(cyclohexylmethyl)-9H-carbazole-3-carboxamido)-3,3-dimethylbutanoate) are 3 representatives of a structural subclass of SCs, characterized by a carbazole core system. In vitro and in vivo phase I metabolism studies were conducted to identify the most suitable metabolites for the detection of these substances in urine screening. Detection and characterization of metabolites were performed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry (LC-ESI-QToF-MS). Eleven in vivo metabolites were detected in urine samples positive for metabolites of EG-018 (n = 8). A hydroxypentyl metabolite, most probably the 4-hydroxypentyl isomer, and an N-dealkylated metabolite mono-hydroxylated at the carbazole core system were most abundant. In vitro studies of EG-018 and EG-2201 indicated that oxidative defluorination of the 5-fluoropentyl side chain of EG-2201 as well as dealkylation led to common metabolites with EG-018. This has to be taken into account for interpretation of analytical findings. A differentiation between EG-018 and EG-2201 (n = 1) uptake is possible by the detection of compound-specific in vivo phase I metabolites evaluated in this study. Out of 30 metabolites detected in urine samples of MDMB-CHMCZCA users (n = 20), a metabolite mono-hydroxylated at the cyclohexyl methyl tail is considered the most suitable compound-specific consumption marker while a biotransformation product of mono-hydroxylation in combination with hydrolysis of the terminal methyl ester function provides best sensitivity due to its high abundance.


Assuntos
Canabinoides/metabolismo , Carbazóis/metabolismo , Biotransformação , Canabinoides/urina , Carbazóis/urina , Cromatografia Líquida de Alta Pressão , Humanos , Drogas Ilícitas/urina , Indicadores e Reagentes , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Detecção do Abuso de Substâncias , Espectrometria de Massas em Tandem
8.
Drug Test Anal ; 10(1): 196-205, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28371476

RESUMO

Indole or indazole-based synthetic cannabinoids (SCs) bearing substituents derived from valine or tert-leucine are frequently abused new psychoactive substances (NPS). The emergence of 5F-MDMB-PICA (methyl N-{[1-(5-fluoropentyl)-1H-indol-3-yl]carbonyl}-3-methylvalinate) on the German drug market is a further example of a substance synthesized in the context of scientific research being misused by clandestine laboratories by adding it to 'legal high' products. In this work, we present the detection of 5F-MDMB-PICA in several legal high products by gas chromatography-mass spectrometry (GC-MS) analysis. To detect characteristic metabolites suitable for a proof of 5F-MDMB-PICA consumption by urine analysis, pooled human liver microsome (pHLM) assays were performed and evaluated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) techniques to generate reference spectra of the in vitro phase I metabolites. The in vivo phase I metabolism was investigated by the analysis of more than 20 authentic human urine specimens and compared to the data received from the pHLM assay. Biotransformation of the 5-fluoropentyl side chain and hydrolysis of the terminal methyl ester bond are main phase I biotransformation steps. Two of the identified main metabolites formed by methyl ester hydrolysis or mono-hydroxylation at the indole ring system were evaluated as suitable urinary biomarkers and discussed regarding the interpretation of analytical findings. Exemplary analysis of one urine sample for 5F-MDMB-PICA phase II metabolites showed that two of the main phase I metabolites are subject to extensive glucuronidation prior to renal excretion. Therefore, conjugate cleavage is reasonable for enhancing sensitivity. Commercially available immunochemical pre-tests for urine proved to be unsuitable for the detection of 5F-MDMB-PICA consumption. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Canabinoides/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Drogas Ilícitas/urina , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Canabinoides/química , Canabinoides/metabolismo , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Cromatografia Gasosa-Espectrometria de Massas/normas , Humanos , Drogas Ilícitas/química , Drogas Ilícitas/metabolismo , Urinálise/métodos , Urinálise/normas
9.
Drug Test Anal ; 10(1): 206-211, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28378533

RESUMO

Since their first appearance on the Internet in 2012, designer benzodiazepines established as an additional, quickly growing compound class among new psychoactive substances. Data regarding pharmacokinetic parameters, metabolism, and detectability for new compounds are limited or often not available. One of these compounds, flubromazolam (8-bromo-6-(2-fluorophenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine), the triazolo-analogue of flubromazepam, has been offered on the Internet from 2014 on. The purpose of the present study was to assess the period of detectability in biological samples along with preliminary basic pharmacokinetic parameters of the designer benzodiazepine flubromazolam. To investigate these, one of the authors ingested a capsule containing 0.5 mg of the drug. Metabolism studies and suitability tests for the detection with immunochemical assays were performed with the samples obtained from the self-experiment and five authentic case samples. Flubromazolam and its mono-hydroxylated metabolite were detectable by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in urine for up to 6.5 and 8 days, respectively (lower limit of quantification (LLOQ) flubromazolam: 0.1 ng/mL). Peak serum concentrations were as low as 8 ng/mL (8 h post ingestion). Glucuronides were also detected. The terminal elimination half-life could be estimated in the range of 10-20 h. Immunochemical assays yielded negative results for serum samples and positive results for urine samples for up to five days post ingestion. The presented data demonstrate the detectability of a single uptake of 0.5 mg of flubromazolam in hair samples collected two weeks after drug uptake by LC-MS3 (cmax 0.6 pg/mg; LOD 0.01 pg/mg). The detected metabolites were in good agreement with those described in other studies. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Benzodiazepinas/farmacocinética , Drogas Desenhadas/farmacocinética , Cabelo/metabolismo , Drogas Ilícitas/farmacocinética , Detecção do Abuso de Substâncias/métodos , Adulto , Benzodiazepinas/análise , Benzodiazepinas/urina , Drogas Desenhadas/análise , Cabelo/química , Cabelo/efeitos dos fármacos , Humanos , Drogas Ilícitas/análise , Drogas Ilícitas/urina , Masculino , Detecção do Abuso de Substâncias/normas
10.
Clin Chem Lab Med ; 55(9): 1375-1384, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28130957

RESUMO

BACKGROUND: The abuse of synthetic cannabinoids (SCs) as presumed legal alternative to cannabis poses a great risk to public health. For economic reasons many laboratories use immunoassays (IAs) to screen for these substances in urine. However, the structural diversity and high potency of these designer drugs places high demands on IAs regarding cross-reactivity of the antibodies used and detection limits. METHODS: Two retrospective studies were carried out in order to evaluate the capability of two homogenous enzyme IAs for the detection of currently prevalent SCs in authentic urine samples. Urine samples were analyzed utilizing a 'JWH-018' kit and a 'UR-144' kit. The IA results were confirmed by an up-to-date liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) screening method covering metabolites of 45 SCs. RESULTS: The first study (n=549) showed an 8% prevalence of SCs use (LC-MS/MS analysis) among inpatients of forensic-psychiatric clinics, whereas all samples were tested negative by the IAs. In a second study (n=200) the combined application of both IAs led to a sensitivity of 2% and a diagnostic accuracy of 51% when applying the recommended IA cut-offs. Overall, 10 different currently prevalent SCs were detected in this population. The results can be explained by an insufficient cross-reactivity of the antibodies towards current SCs in combination with relatively high detection limits of the IAs. CONCLUSIONS: In light of the presented study data it is strongly recommended not to rely on the evaluated IA tests for SCs in clinical or forensic settings. For IA kits of other providers similar results can be expected.


Assuntos
Canabinoides/urina , Imunoensaio , Detecção do Abuso de Substâncias , Canabinoides/química , Canabinoides/metabolismo , Humanos , Estudos Retrospectivos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
11.
Drug Test Anal ; 9(2): 311-316, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26888282

RESUMO

Recently, the pyrazole-containing synthetic cannabinoid N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide (3,5-AB-CHMFUPPYCA) has been identified as a 'research chemical' both in powdered form and as an adulterant present in herbal preparations. Urine is the most common matrix used for abstinence control and the extensive metabolism of synthetic cannabinoids requires implementation of targeted analysis. The present study describes the investigation of the in vitro phase I metabolism of 3,5-AB-CHMFUPPYCA and its regioisomer 5,3-AB-CHMFUPPYCA using pooled human liver microsomes. Metabolic patterns of both AB-CHMFUPPYCA isomers were qualitatively similar and dominated by oxidation of the cyclohexylmethyl side chain. Biotransformation to monohydroxylated metabolites of high abundance confirmed that these species might serve as suitable targets for urine analysis. Furthermore, since synthetic cannabinoids are commonly administered by smoking and because some metabolites can also be formed as thermolytic artefacts, the stability of both isomers was assessed under smoking conditions. Under these conditions, pyrolytic cleavage of the amide bond occurred that led to approximately 3 % conversion to heat-induced degradation products that were also detected during metabolism. These artefactual 'metabolites' could potentially bias in vivo metabolic profiles after smoking and might have to be considered for interpretation of metabolite findings during hair analysis. This might be relevant to the analysis of hair samples where detection of metabolites is generally accepted as a strong indication of drug use rather than a potential external contamination. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Butanos/metabolismo , Canabinoides/metabolismo , Microssomos Hepáticos/metabolismo , Pirazóis/metabolismo , Butanos/química , Canabinoides/química , Cromatografia Líquida , Estabilidade de Medicamentos , Humanos , Isomerismo , Pirazóis/química , Espectrometria de Massas em Tandem , Temperatura
12.
Drug Test Anal ; 9(5): 744-753, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27504870

RESUMO

Among the recently emerged synthetic cannabinoids, MDMB-CHMICA (methyl N-{[1-(cyclohexylmethyl)-1H-indol-3-yl]carbonyl}-3-methylvalinate) shows an extraordinarily high prevalence in intoxication cases, necessitating analytical methods capable of detecting drug uptake. In this study, the in vivo phase I metabolism of MDMB-CHMICA was investigated using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry (LC-ESI-Q ToF-MS) techniques. The main metabolites are formed by hydrolysis of the methyl ester and oxidation of the cyclohexyl methyl side chain. One monohydroxylated metabolite, the ester hydrolysis product and two further hydroxylated metabolites of the ester hydrolysis product are suggested as suitable targets for a selective and sensitive detection in urine. All detected in vivo metabolites could be verified in vitro using a human liver microsome assay. Two of the postulated main metabolites were successfully included in a comprehensive LC-ESI-MS/MS screening method for synthetic cannabinoid metabolites. The screening of 5717 authentic urine samples resulted in 818 cases of confirmed MDMB-CHMICA consumption (14%). Since the most common route of administration is smoking, smoke condensates were analyzed to identify relevant thermal degradation products. Pyrolytic cleavage of the methyl ester and amide bond led to degradation products which were also formed metabolically. This is particularly important in hair analysis, where detection of metabolites is commonly considered a proof of consumption. In addition, intrinsic activity of MDMB-CHMICA at the CB1 receptor was determined applying a cAMP accumulation assay and showed that the compound is a potent full agonist. Based on the collected data, an enhanced interpretation of analytical findings in urine and hair is facilitated. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Drogas Ilícitas/metabolismo , Drogas Ilícitas/urina , Indóis/metabolismo , Indóis/urina , Cromatografia Líquida/métodos , AMP Cíclico/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Psicotrópicos/metabolismo , Psicotrópicos/urina , Espectrometria de Massas por Ionização por Electrospray/métodos , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos
14.
Int J Biochem Cell Biol ; 80: 173-178, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27720933

RESUMO

Secondary metastases are the leading cause of mortality in patients with breast cancer. Cytochrome P450 (CYP) 2J2 (CYP2J2) is upregulated in many human tumors and generates epoxyeicosanoids from arachidonic acid that promote tumorigenesis and metastasis, but at present there is little information on the genes that mediate these actions. In this study MDA-MB-468 breast cancer cells were stably transfected with CYP2J2 (MDA-2J2 cells) and Affymetrix microarray profiling was undertaken. We identified 182 genes that were differentially expressed in MDA-2J2 cells relative to control (MDA-CTL) cells (log[fold of control] ≥2). From gene ontology pathway analysis bone morphogenetic protein (BMP) receptor 1B (BMPR1B) emerged as an important upregulated gene in MDA-2J2 cells. Addition of the BMPR1B ligand BMP2 stimulated the migration of MDA-2J2 cells, but not MDA-CTL cells, from 3D-matrigel droplets. Migration of MDA-2J2 cells was prevented by the BMPR antagonist dorsomorphin. These findings indicate that over-expression of CYP2J2 in MDA-MB-468-derived breast cancer cells activates BMPR1B expression that may contribute to increased migration. Targeting BMPR1B may be a novel approach to inhibit the metastatic activity of breast cancers that contain high levels of CYP2J2.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Movimento Celular/genética , Sistema Enzimático do Citocromo P-450/genética , Ativação Transcricional , Neoplasias de Mama Triplo Negativas/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Citocromo P-450 CYP2J2 , Expressão Gênica , Ontologia Genética , Humanos , Metástase Neoplásica , Regulação para Cima/genética
15.
J Mass Spectrom ; 51(11): 1080-1089, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27535017

RESUMO

Designer benzodiazepines represent an emerging class of new psychoactive substances. While other classes of new psychoactive substances such as cannabinoid receptor agonists and designer stimulants are mainly consumed for hedonistic reasons, designer benzodiazepines may also be consumed as 'self-medication' by persons suffering from anxiety or other psychiatric disorders or as stand-by 'antidote' by users of stimulant and hallucinogenic drugs. In the present study, five benzodiazepines (adinazolam, cloniprazepam, fonazepam, 3-hydroxyphenazepam and nitrazolam) and one thienodiazepine (metizolam) offered as 'research chemicals' on the Internet were characterized and their main in vitro phase I metabolites tentatively identified after incubation with pooled human liver microsomes. For all compounds, the structural formula declared by the vendor was confirmed by nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (MS), liquid chromatography MS/MS and liquid chromatography quadrupole time-of-flight MS analysis. The detected in vitro phase I metabolites of adinazolam were N-desmethyladinazolam and N-didesmethyladinazolam. Metizolam showed a similar metabolism to other thienodiazepines comprising monohydroxylations and dihydroxylation. Cloniprazepam was metabolized to numerous metabolites with the main metabolic steps being N-dealkylation, hydroxylation and reduction of the nitro function. It has to be noted that clonazepam is a metabolite of cloniprazepam, which may lead to difficulties when interpreting analytical findings. Nitrazolam and fonazepam both underwent monohydroxylation and reduction of the nitro function. In the case of 3-OH-phenazepam, no in vitro phase I metabolites were detected. Formation of licensed benzodiazepines (clonazepam after uptake of cloniprazepam) and the sale of metabolites of prescribed benzodiazepines (fonazepam, identical to norflunitrazepam, and 3-hydroxyphenazepam) present the risk of incorrect interpretation of analytical findings. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Benzodiazepinas/metabolismo , Estimulantes do Sistema Nervoso Central/metabolismo , Drogas Desenhadas/metabolismo , Alucinógenos/metabolismo , Microssomos Hepáticos/metabolismo , Benzodiazepinas/química , Estimulantes do Sistema Nervoso Central/química , Cromatografia Líquida de Alta Pressão , Drogas Desenhadas/química , Cromatografia Gasosa-Espectrometria de Massas , Alucinógenos/química , Humanos , Espectroscopia de Ressonância Magnética/métodos , Desentoxicação Metabólica Fase I , Espectrometria de Massas em Tandem
16.
Forensic Sci Int ; 266: e93-e98, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27297324

RESUMO

Synthetic cannabinoids have become an integral part of the drugs of abuse market since many years. The most frequent form of consumption for this class of substances is smoking of herbal mixtures purchased via the Internet. In this article the identification and structure elucidation of a new synthetic cannabinoid, [1-(cyclohexylmethyl)-1H-indol-3-yl](naphthalen-1-yl)methanone, is described. The compound was found along with 5F-ADB in a 'herbal mixture' called 'Jamaican Gold Extreme', which was sent to our laboratory in the context of a suspected intoxication. For isolation of the substance a flash chromatography separation was applied. Structure elucidation was performed using gas chromatography-mass spectrometry (GC-MS), gas chromatography solid-state infrared (GC-sIR) and nuclear magnetic resonance (NMR) analysis. The new compound can be described as the cyclohexyl methyl derivative of the first generation synthetic cannabinoid JWH-018, and the authors suggest to use "NE-CHMIMO" as a semisystematic name.


Assuntos
Canabinoides/química , Drogas Ilícitas/química , Cromatografia Gasosa/métodos , Toxicologia Forense/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectroscopia de Ressonância Magnética
17.
Anal Bioanal Chem ; 408(13): 3445-52, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26935933

RESUMO

The detection of drug metabolites in hair is widely accepted as a proof for systemic uptake of the drug, unless the metabolites can be formed as artefacts. However, regarding synthetic cannabinoids, not much is known about mechanisms of incorporation into hair. For a correct interpretation concerning hair findings of these compounds and their metabolites, it is necessary to identify the different routes of incorporation and to assess their contribution to analytical findings. This study presents the results of the LC-ESI-MS/MS analysis of an authentic hair sample taken from a patient with a known history of heavy consumption of synthetic cannabinoids. In the authentic hair sample, 5F-PB-22 and AB-CHMINACA as well as their main metabolites 5F-PB-22 3-carboxyindole, PB-22 5-OH-pentyl, and AB-CHMINACA valine were detected in all segments, comprising segments grown in a time period where the substances had not been distributed on the 'legal high' market. To enable interpretation of the results regarding the distribution of the detected analytes along the hair shaft, the stability of 5F-PB-22 and AB-CHMINACA in hair matrix and under thermal stress was assessed. The stability tests revealed that the three 'metabolites' are also formed in externally contaminated hair after storage of the samples under different conditions. In addition, 5F-PB-22 3-carboxyindole and AB-CHMINACA valine were identified as degradation products in smoke condensate. Therefore, interpretation of 'metabolite' findings of compounds comprising chemically labile amide/ester bonds or 5-fluoro-pentyl side chains should be carried out with utmost care, taking into account the different mechanisms of formation and incorporation into hair.


Assuntos
Canabinoides/metabolismo , Cabelo/metabolismo , Adolescente , Cromatografia Líquida/métodos , Feminino , Humanos , Limite de Detecção , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
19.
Drug Test Anal ; 8(1): 128-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26097164

RESUMO

A previous study has shown that Δ(9) -tetrahydrocannabinolic acid A (THCA-A), the non-psychoactive precursor of Δ(9) -tetrahydrocannabinol (THC) in the cannabis plant does not get incorporated in relevant amounts into the hair through the bloodstream after repeated oral intake. However, THCA-A can be measured in forensic hair samples in concentrations often exceeding the detected THC concentrations. To investigate whether the handling of cannabis plant material prior to consumption is a contributing factor for THC-positive hair results and also the source for THCA-A findings in hair, a study comprising ten participants was conducted. In this study, the participants rolled a marijuana joint on five consecutive days and hair samples of each participant were obtained. Urine samples were taken to exclude cannabis consumption prior to and during the study. THCA-A and THC could be detected in the hair samples from all participants taken at the end of the exposure period (concentration range: 15-1800 pg/mg for THCA-A and < 10-93 pg/mg for THC). Four weeks after the first exposure, THCA-A could still be detected in the hair samples of nine participants (concentration range: 4-57 pg/mg). Furthermore, THC could be detected in the hair samples of five participants (concentration range: < 10-17 pg/mg). Based on these results, it can be concluded that at least parts of the THC as well as the major part of THCA-A found in routine hair analysis derives from external contamination caused by direct transfer through contaminated fingers. This finding is of particular interest in interpreting THC-positive hair results of children or partners of cannabis users, where such a transfer can occur due to close body contact. Analytical findings may be wrongly interpreted as a proof of consumption or at least passive exposure to cannabis smoke. Such misinterpretation could lead to severe consequences for the people concerned.


Assuntos
Dronabinol/análogos & derivados , Dronabinol/análise , Fumar Maconha , Dronabinol/metabolismo , Cabelo/química , Cabelo/metabolismo , Humanos , Fumar Maconha/metabolismo , Detecção do Abuso de Substâncias/métodos
20.
Sci Rep ; 5: 14906, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26443501

RESUMO

Hair analysis for cannabinoids is extensively applied in workplace drug testing and in child protection cases, although valid data on incorporation of the main analytical targets, ∆9-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-THC (THC-COOH), into human hair is widely missing. Furthermore, ∆9-tetrahydrocannabinolic acid A (THCA-A), the biogenetic precursor of THC, is found in the hair of persons who solely handled cannabis material. In the light of the serious consequences of positive test results the mechanisms of drug incorporation into hair urgently need scientific evaluation. Here we show that neither THC nor THCA-A are incorporated into human hair in relevant amounts after systemic uptake. THC-COOH, which is considered an incontestable proof of THC uptake according to the current scientific doctrine, was found in hair, but was also present in older hair segments, which already grew before the oral THC intake and in sebum/sweat samples. Our studies show that all three cannabinoids can be present in hair of non-consuming individuals because of transfer through cannabis consumers, via their hands, their sebum/sweat, or cannabis smoke. This is of concern for e.g. child-custody cases as cannabinoid findings in a child's hair may be caused by close contact to cannabis consumers rather than by inhalation of side-stream smoke.


Assuntos
Dronabinol/análise , Cabelo/química , Alucinógenos/análise , Fumaça/efeitos adversos , Detecção do Abuso de Substâncias/métodos , Administração Oral , Dronabinol/administração & dosagem , Cromatografia Gasosa-Espectrometria de Massas , Alucinógenos/administração & dosagem , Humanos , Masculino , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...